Menerapkan Kecerdasan Buatan Di Aplikasi Seluler Dalam Perspektif Organisasi
Jika membahas dari segi organisasi, maka berikut ini adalah manfaat yang dapat digunakan oleh organisasi atau startup ketika mengimplementasikan kecerdasan buatan pada aplikasi seluler.
1. Menerapkan Kecerdasan Buatan Untuk Mempromosikan Penjualan Dan Pemasaran
Penggunaan kecerdasan buatan dalam operasi penjualan dan pemasaran organisasi dapat membantu meningkatkan statistik secara signifikan. Baca 6 Proses Bisnis Menggunakan Teknologi Kecerdasan Buatan
2. Menerapkan Kecerdasan Buatan Untuk Pembiayaan Proyek Lebih Mudah
Saat ini, lebih mudah bagi perusahaan baru yang menerapkan kecerdasan buatan untuk mendapatkan pembiayaan. Sehingga persaingan pasar akan semakin ketat.
3. Tingkatkan Pengalaman Pengguna
Kecerdasan buatan meningkatkan fungsionalitas aplikasi dan meningkatkan pengalaman pengguna.
4. Keamanan Yang Ditingkatkan
Kecerdasan buatan dapat membantu organisasi meningkatkan keamanan pengguna akhir dan mendeteksi transaksi berbahaya.
5. Sumber Daya Manusia
Kecerdasan buatan dapat membantu orang mengurangi tugas yang berulang dan mengoptimalkan sumber daya manusia. Sehingga membantu mengendalikan biaya dalam prosesnya.
Bagaimana Menerapkan Kecerdasan Buatan Dan Mengembangkan Aplikasi Seluler
Langkah-langkah berikut dapat digunakan untuk mengimplementasikan dan mengintegrasikan kecerdasan buatan dalam proyek aplikasi seluler.
1. Mengenali Masalah Yang Harus Diselesaikan
Kecerdasan buatan dapat diterapkan pada aplikasi seluler sebagai satu atau lebih fungsi. Namun, disarankan untuk menerapkan kecerdasan buatan sekaligus untuk mencegah kompleksitas dan memanfaatkan sepenuhnya semua keunggulan kecerdasan buatan.
Implementasi bertahap dari kecerdasan buatan dapat meningkatkan kompleksitas. Orang harus mengenali masalah yang perlu diselesaikan dengan menggunakan teknologi kecerdasan buatan dalam aplikasi seluler, dan harus menilai laba atas investasi dan nilai layanan sebelum proses integrasi dimulai.
2. Pahami Ekspektasi Kecerdasan Buatan
Tidak ada keraguan bahwa kecerdasan buatan adalah teknologi yang sangat berpengaruh yang tidak diragukan lagi dapat meningkatkan aplikasi yang ada dan membawanya ke tingkat yang baru.
Namun, penting untuk memahami potensi kecerdasan buatan dan jenis perbaikan yang dicari darinya. Orang dapat mengevaluasi fungsionalitas aplikasi yang ada dan fokus pada fungsi atau fitur yang dapat ditambahkan ke aplikasi yang diusulkan untuk memanfaatkan kecerdasan buatan.
Organisasi dapat melakukan analisis pasar secara menyeluruh untuk memahami apakah penerapan serupa telah diterapkan di pasar dan layanan apa yang dapat diberikan kepada konsumen.
Organisasi harus menganalisis apakah kecerdasan buatan, pembelajaran mesin, pemrosesan gambar dan pengenalan pola benar-benar diperlukan serta manfaat dan laba atas investasi yang diharapkan. Ini adalah langkah dasar untuk menentukan masalah dan ruang lingkup implementasinya.
3. Pahami Sifat Data Di Aplikasi Seluler
Data adalah dasar dari kecerdasan buatan dan sangat penting bagi organisasi untuk memahami aliran data. Kecerdasan buatan beroperasi pada data dan mode kerjanya berubah seiring dengan perubahan sifat data dalam aplikasi seluler.
Setelah aliran data dievaluasi, penyempurnaan data harus dipertimbangkan. Organisasi harus memastikan bahwa modul kecerdasan buatan menyediakan data yang bersih, informatif dan tidak berulang.
5. Menerapkan API Berbasis Kecerdasan Buatan
Ada beberapa API terkait AI di pasaran, tetapi menggunakan API berbasis AI tidak menjamin solusi lengkap berbasis AI. Organisasi harus mencurahkan lebih banyak sumber daya untuk pemodelan data dan aspek terkait kecerdasan buatan lainnya untuk mengembangkan sistem yang benar-benar cerdas.
Menerapkan Studi Kelayakan Peningkatan Penggunaan Kecerdasan Buatan Dalam Aplikasi Seluler
Setelah organisasi memiliki prasyarat dasar, maka harus dilakukan uji kelayakan secara menyeluruh. Pengujian ini dapat membantu organisasi memahami apakah penerapan kecerdasan buatan akan meningkatkan pengalaman pengguna akhir dan meningkatkan keterlibatan pengguna.
Peningkatan atau migrasi yang berhasil dapat memuaskan pengguna akhir dan menarik lebih banyak pengguna potensial untuk menggunakan aplikasi seluler. Ini perlu dievaluasi di sini.
Jika peningkatan tidak meningkatkan efisiensi dan fungsionalitas aplikasi seluler, tidak perlu mengeluarkan uang dan tenaga untuk ini. Organisasi juga perlu menganalisis apakah sumber daya saat ini dapat memulai dan memberikan implementasi AI yang diharapkan.
Atau apakah organisasi memerlukan sumber daya eksternal untuk meningkatkan kapabilitas. Jika perlu, sikap terbuka harus diadopsi untuk mengadopsi sumber daya baru atau pekerjaan outsourcing ke penyedia layanan.
Setelah organisasi mempekerjakan pakar kecerdasan buatan dan pembelajaran mesin, merumuskan strategi implementasi. Menyelesaikan analisis awal dan memahami persyaratan teknisnya.
Organisasi tersebut harus mempekerjakan pakar kecerdasan buatan atau pembelajaran mesin untuk mengembangkan aplikasi.
Yang penting adalah mempercayakan pekerjaan pengembangan kepada penyedia layanan dengan keahlian dan pengalaman kecerdasan buatan. Kemudian hanya organisasi yang dapat mewujudkan produk yang diinginkannya. Tim pengembangan harus terdiri dari konsultan perangkat lunak, perancang dan ahli kecerdasan buatan.
Serta sumber daya manajemen proyek yang dapat membantu organisasi merumuskan strategi proyek dan melaksanakan pekerjaan sesuai dengan rencana yang ditentukan.
Mereka harus melakukan analisis perilaku pengguna, ekspektasi aplikasi dan tingkat personalisasi yang diperlukan. Berikut hal-hal yang perlu diperhatikan.
1. Integrasi Dan Keamanan Data
Memiliki model organisasi data yang pasti sangat penting. Organisasi harus memastikan pengelolaan yang tepat atas data yang ada. Pengelolaan yang tidak tepat dapat memengaruhi efisiensi dan efektivitas penyebaran kecerdasan buatan.
Penting untuk fokus pada kumpulan data dan database serta strukturnya. Baca Kecerdasan Buatan Dan Keamanan Dunia Internet Bagai Pedang Bermata Dua
Data yang terstruktur dengan baik dan terorganisir dengan baik serta integrasinya akan meningkatkan kinerja aplikasi dan memastikan hasil yang lebih berkualitas. Keamanan data adalah aspek penting lainnya dan harus diberi prioritas.
Organisasi perlu mengadopsi strategi yang tepat untuk mengintegrasikan standar keamanan. Sehingga aplikasi memiliki kemampuan untuk menahan serangan dunia maya dan keamanan yang memadai untuk memenuhi tantangan keamanan.
2. Tahap Implementasi
Setelah semua analisis yang diperlukan dan tugas lainnya diselesaikan. Organisasi dapat melanjutkan pekerjaan pengembangan. Sebelum memperkenalkan lingkungan waktu nyata, penting untuk menguji dan menerapkan hasil penerapan ini dengan cermat.
Disarankan untuk menggunakan sistem analisis kuat yang sesuai sebelum mengintegrasikan fungsi kecerdasan buatan ke dalam aplikasi seluler yang diusulkan. Ini akan membantu organisasi menganalisis pro dan kontra integrasi kecerdasan buatan dan membantu organisasi membuat keputusan yang lebih baik di masa depan.
3. Menerapkan Teknologi Bantuan Kecerdasan Buatan Yang Benar
Organisasi harus memilih teknologi dan perangkat yang tepat untuk mengembangkan solusi digital yang dibutuhkan.
Untuk menjaga konsistensi aplikasi seluler organisasi, layanan komputasi, infrastruktur komputasi awan, penyimpanan data, layer pengembangan, basis data, perangkat lunak cadangan, alat keamanan, dan solusi pengoptimalan lainnya harus andal, kuat, dan tahan terhadap pengujian di masa mendatang.
Jika teknologi dan perangkat yang tepat tidak dipilih, aplikasi yang diadopsi oleh organisasi akan berdampak buruk pada kinerja.
Baca juga : Tantangan Keamanan Cloud Computing Dan Solusinya
4. Mengaktifkan Indikator Untuk Mengevaluasi Efektivitas Integrasi Kecerdasan Buatan
Mengevaluasi kinerja integrasi kecerdasan buatan memang merupakan tugas penting. Kinerja hanya dapat dievaluasi setelah organisasi memiliki metrik yang sesuai.
Organisasi dapat meninjau dan mengevaluasi kinerja integrasi kecerdasan buatan berdasarkan indikator dan membuat keputusan yang tepat bila diperlukan.
5. Dapatkan Bantuan Dari Data Scientist
Ilmu data dapat membantu mengatur dan meningkatkan data dan memenuhi persyaratan manajemen datanya. Data memainkan peran paling penting dalam penerapan kecerdasan buatan, dan organisasi membutuhkan keahlian yang tepat untuk memenuhi persyaratan ini.
6. Perluasan Data
Augmentasi data dapat membantu pengembang mengelola keragaman data tanpa mengumpulkan data baru. Beberapa teknik peningkatan data seperti padding, flipping dan trimming dapat digunakan untuk jaringan neural besar yang memproses berbagai data.
Organisasi harus cukup siap dalam sistem untuk memastikan operasi normal dalam berbagai data dan lingkungan.
Alat yang bisa digunakan Untuk Menerapkan Kecerdasan Buatan Pada Aplikasi Seluler
Organisasi dapat menggunakan alat berikut dalam proyek aplikasi seluler untuk mengimplementasikan kecerdasan buatan dan pembelajaran mesin dalam aplikasi seluler.
1. IBM Watson
Membantu organisasi mengembangkan dan melatih model kecerdasan buatan. Menyediakan fungsi untuk mempersiapkan dan menganalisis data dalam lingkungan terintegrasi.
2. TensorFlow
Platform open source untuk kecerdasan buatan dan pembelajaran mesin. Menyediakan ekosistem sumber daya yang fleksibel yang dapat membantu pengembang membangun aplikasi seluler berdasarkan kecerdasan buatan atau pembelajaran mesin.
3. Azure
Layanan komputasi awan dan kecerdasan buatan yang memungkinkan organisasi membangun dan menerapkan model dan solusi kecerdasan buatan atau pembelajaran mesin.
4. API.ai
Gunakan kecerdasan buatan atau algoritma pembelajaran mesin untuk mengevaluasi dan mencocokkan kebutuhan pengguna. Membantu organisasi mengembangkan kecerdasan buatan dinamis atau model pembelajaran mesin yang sesuai.
5. Clarifai
Platform perusahaan untuk kecerdasan buatan yang menggunakan pembelajaran mesin tingkat lanjut untuk memahami teks, gambar dan video.
6. WIT.ai
Framework bot chat Facebook dan antarmuka bahasa alami. Pengembang dapat menggunakan fungsi pemrosesan bahasa aslinya untuk mengubah kalimat menjadi data terstruktur.
7. Amazon AI
Menyediakan berbagai layanan kecerdasan buatan untuk menyediakan layanan cerdas untuk aplikasi organisasi. Layanan kecerdasan buatannya dapat dengan mudah diintegrasikan dengan aplikasi organisasi untuk memecahkan masalah yang kompleks.
Dampak Menerapkan Kecerdasan Buatan Bagi Kehidupan Manusia
Kecerdasan buatan pernah dianggap sebagai salah satu teknologi paling kompleks. Namun, kini sudah menjadi bagian dari keseharian masyarakat bahkan tanpa disadari keberadaannya.
Dalam statistik, mereka akan menunjukkan kepada orang-orang popularitas kecerdasan buatan dan dampak potensial pada kehidupan orang-orang. Baca 7 Kecerdasan Buatan Yang Perlu Diwaspadai Manusia
Menurut firma riset pasar MarketsandMarkets, industri kecerdasan buatan dapat menjadi industri senilai $ 190 miliar pada tahun 2025. Menurut survei yang dilakukan oleh lembaga riset terkenal IDC.
Pada tahun 2021, pengeluaran global untuk kecerdasan buatan bisa mencapai 57,6 miliar dolar AS. Sebuah laporan survei yang dirilis oleh DC pada tahun 2019 menunjukkan bahwa lebih dari 40% rencana transformasi digital menggunakan kecerdasan buatan sebagai teknologi pendukung.
DC memperkirakan bahwa pada tahun 2021, 75% aplikasi bisnis akan menggunakan kecerdasan buatan sampai batas tertentu. Lebih dari 80% pemimpin teknologi dan bisnis mengatakan bahwa kecerdasan buatan akan membantu mereka meningkatkan produktivitas dan menciptakan jutaan pekerjaan.
Lebih dari 80% pakar pemasaran percaya bahwa perangkat lunak chatbot telah sepenuhnya mengubah pengalaman konsumen, dan mereka berencana untuk mengadopsi alat tersebut pada tahun 2020. Laporan survei Gartner menunjukkan bahwa pada tahun 2020, lebih dari 40% aplikasi seluler akan didukung oleh jaringan saraf berbasis cloud.
Kesimpulan
Tujuan utama dari menerapkan kecerdasan buatan adalah untuk membuat jaringan dan perangkat komputer lebih pintar dan untuk memastikan bahwa mereka saling berkoordinasi dengan cara yang terbaik. Ini memberikan cara bagi organisasi untuk meningkatkan aktivitas manusia.
Dengan perkembangan kecerdasan buatan dan teknologi terkait, pekerjaan dan kehidupan manusia akan membawa perubahan revolusioner.
Menerapkan kecerdasan buatan dalam aplikasi bisnis dapat menguntungkan organisasi dalam banyak hal. Paling tidak, ini dapat membantu organisasi memahami perilaku pengguna akhir dan menyediakan fitur pencarian, pemasaran digital dan personalisasi yang lebih baik.
Munculnya blockchain dan cryptocurrency mengharuskan bank dan lembaga keuangan untuk menggunakan kecerdasan buatan dan pembelajaran mesin untuk memahami perilaku pengguna dan meningkatkan keamanan.
Labkom99 dalam artikel ini bagaimana cara Menerapkan Kecerdasan Buatan Dalam Pengembangan Aplikasi Seluler. Menjelaskan pentingnya kecerdasan buatan dan memberikan beberapa tips berguna untuk menjelaskan integrasi kecerdasan buatan ke dalam aplikasi seluler organisasi dan peran apa yang dapat dimainkan kecerdasan buatan dalam aplikasi seluler.
Harapan dapat membantu organisasi menentukan cara yang tepat untuk mengintegrasikan kecerdasan buatan dengan aplikasi seluler mereka.